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Abstract— In manufacturing systems, the term bottleneck
refers to a component that limits the entire throughput of a
system. A number of approaches have attempted bottleneck
detection. However, existing solutions have limitations, leaving
the bottleneck identification still no trivial task. To address the
shortcomings of prior works, we study Job Shop Scheduling
Problems (JSSP) with the realistic extension that jobs are
enqueued periodically, and propose a machine learning based
solution to such a problem, named MINERVA. MINERVA first
finds the optimal resource scheduling for a target interval,
based on a model-free reinforcement learning technique. Then,
using an artificial neural network classifier, MINERVA identifies
the constrained resources for each target interval. MINERVA is
evaluated on two representative benchmarks with the key result
being that MINERVA is able to detect the system bottleneck(s)
with a high accuracy of 95.2%, which is almost 25% better
than the best-in-class bottleneck identification methods.

I. INTRODUCTION

The advancements in miniaturized and communication-
enabled sensors and computer software for them are causing
significant changes in the field of factory operations and man-
ufacturing. With the increasing scale of factory operations
and the large amounts of real-time data available therefrom
from various embedded sensors, we can now optimize fac-
tory operations in a data-driven manner. A logical and cost-
effective way to come up with the desirable design points is
to use simulation-based modeling of factory operations [28].
System simulations are important tools used in the modeling
of factory performance because such tools allow the asso-
ciated personnel to finetune the input parameters without
realtime changes in the system configurations, which may
well be untenable in a production environment. Finding an
optimal resource allocation and scheduling policy for the
job shop scheduling problem (JSSP), also known as the
job-shop problem, is a non trivial optimization problem in
computer science and operations research in which ideal
jobs are assigned to the ideal resources at the correct times
within the ambit of the smart factory or any other distributed
system for that matter [20]. These distributed systems often
have bottlenecks that prevent them from reaching optimal
performance. A bottleneck is defined simply as a machine
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(resource) in the system that limits the job’s throughput such
that increasing the capacity or availability of the bottlenecked
resource increases performance. It is crucial to identify
and eliminate these bottlenecks to achieve the best possible
performance [19], [34]. In many cases, these bottlenecks are
complex and dynamic i.e., they vary with time and with other
system parameters like the job distribution [3].

In this paper, we solve the two related problems in the
context of a distributed factory operation with multiple
sensor-equipped machines: optimal scheduling of arriving
jobs to machines and bottleneck identification (under the
optimal scheduling policy) to improve the throughput till the
desired throughput is achieved.

The classic JSSP aims to assign a given number of
job types to a given set of machine pools (here, resource
pools) so that some objective function is optimized and is
a well-traversed optimization problem in computer science
and operations research [8], [36], [14]. The above papers
have presented a variety of solution approaches, which we
analyze in detail in Section VII. Fundamentally, these JSSP
models have a fixed number of job types and fixed number of
resource pools. Each resource pool consists of some number
of identical machines, which is referred to as the capacity of
the resource pool. After a job has been scheduled and started
to be processed on a machine, the machine can process
another job only after the completion of the current one, i.e.,
there is no preemption. Each job type has a fixed sequence of
resource pools that it has to be processed on. Each machine
is able to process only one job at a time. However, this
classic JSSP is a much simpler version of the real world
of factory operations. In a more realistic scenario, there is
a continuous stream of jobs arriving to be processed rather
than a fixed number of jobs under each job type [7]. This
indicates that there is a change in the state of the system as
time progresses. So, there is stochasticity in the arrival rate
of the jobs, and hence the system is not completely known
at the beginning of the operation, as all prior work assumes.
So, the scheduling policy, which is essentially a rule that
governs the job assignment to the available resource pools,
needs to be flexible, possibly a function of the current state,
which can be modeled as a Markov process.

The problem of finding the optimal scheduling policy
can be effectively solved by using reinforcement learning
(RL). This is because for any system that can be modeled



as a Markov decision process, RL can enable the learning
process of the software agent, in a statistical sense, based
on the feedback it gets when it performs different actions
with changes in ambient signals. In the case of this problem,
since our objective is to maximize the throughput, when
the agent makes a good scheduling decision, the throughput
increases, and hence it gets a positive reward, which can
further reinforce this action. In contrary, if the agent takes
an action that is a bad scheduling decision, the throughput
decreases, resulting in a penalty that discourages the agent
from taking such decisions in the future. This technique
is also generic in the sense that it can be applied to any
JSSP model or smart-factory model because RL starts out
by treating its environment as a black box, and learns about
the environment as time progresses, through the feedback
process. Another reason why RL is a good fit for our problem
is because it can focus on maximizing the cumulative long
term reward as opposed to getting stuck in short-term local
maxima in the throughput. This means that the agent will be
able to learn a scheduling policy that will result in greater
throughput in the longer term (globally), notwithstanding lo-
cal drops in throughput. Some prior works have successfully
used reinforcement learning algorithms to solve JSSP [30],
[5], [35], [37]. However, none of them is applicable to the
continuous arrival of jobs to the system, as they all assume
that the number of jobs is discrete and a constant number.
Moreover, none of them has addressed the problem of finding
the bottleneck resource in the system.

In this paper, we present a new technique called MIN-
ERVA, which solves two problems in a distributed workflow
representative of a factory floor—first, it creates an optimal
schedule of the jobs on the resource pools for a continuously
arriving set of jobs, and second, it identifies which machine
pool is the bottleneck and relieves the bottleneck by adding
capacity. A schematic of MINERVA is given in Figure 1.
MINERVA first optimizes the scheduling of the various jobs
within the factory model using reinforcement learning. It
learns the scheduling actions that would lead to maximization
of cumulative rewards using Q-learning, increasing system
throughput. Since the state space of a realistic factory model
is huge (it grows exponentially with the numbers of jobs
currently active in the system and the number of different
types of machine pools), it is impractical to use simple Q-
learning as it would take too much time to converge over
the millions of iterations needed to cover all these states,
multiple times, in order to learn the optimal policy. So,
MINERVA uses an approximate Q-learning method that uses
neural networks to approximate the Q-function, proven to
work well on real-time systems with huge state spaces [26],
[27]. If the throughput with the optimal schedule is still less
than the desired throughput, MINERVA finds the bottleneck
machine pool in the system, so that its capacity could be
increased for further increase in the throughput. MINERVA
leverages some of the bottleneck identification metrics al-
ready existing in literature, such as the length of the queue at
each machine pool, which can be observed from the factory
model. It then applies a previously learned neural network

to identify the system bottleneck based on these metrics.
Once the bottleneck resource pool is identified, its capacity
is increased by 1 unit, mimicking the addition of a machine
to that machine pool. This updated system is then simulated
and the above steps are repeated until the desired throughput
is reached.

Fig. 1. Schematic of MINERVA

We consider a physically distributed set of resources
and jobs that have to be physically routed among them.
Thus, there are physical transfer times as well as digital
communication times involved for the metrics to reach the
central scheduler, such as, queue length at any resource,
and for the scheduler to dispatch its bottleneck mitigation
command. We incorporate these delays into our formulation
and solution and study their effects on the overall throughput.

This paper makes the following key contributions:
1) We develop MINERVA, an approximate reinforce-

ment learning (RL)-based technique to ensure optimal
scheduling for the dynamic job shop scheduling prob-
lem (JSSP). We demonstrate how effectively neural
networks can be used to approximate the Q-functions
for these problems, which have a huge state space.

2) We develop a neural network-based bottleneck identifi-
cation technique to identify and eliminate system bot-
tlenecks that limit throughput in distributed systems.

3) We implement the above mentioned techniques on
representative benchmarks, with the added realistic
extension to be applicable to a continuous and dynamic
inflow of jobs. We show that MINERVA performs much
better than the best-in-class techniques.

II. BACKGROUND

A. JSSP and scheduling

Classic JSSP [36] has been an important research area
in both industrial engineering and operations research for
half a century. The goal is to allocate a specified number
of job types to a limited number of resource pools in such
a way that some job-specific objective is optimized. A job-
shop has n different possible job types, J1, J2 . . . Jn, and
m different resource pools P1, P2 . . . Pm. Each job within
a job type has a particular fixed, sequence of operations
to be performed on it to transform the input into the final



desired product. A particular operation on a job can be
performed by machines of a particular resource pool, and
takes a fixed amount of processing time to complete. A job is
finished after completion of its last operation. Typically, the
number of resource pools is less than or equal to the number
of job types. After a job has been scheduled and started
to be processed on a machine, the machine can process
another job only after the completion of the current one.
The desired optimization in JSSP is usually the minimization
of makespan or the total length of the schedule when all
the jobs in the systems have been completed. One of the
examples of a classic job shop problem, usually referred to
as ft06 [4] and its solution [16] is given in Figure 2 for
a better understanding. Each row in the table represents a
job, and the columns have the machine numbers and the
processing times for the different operations on the job. The
operations have to be performed in a specific sequence. For
job 1, it has to be processed first on machine 3 and that takes
1 time unit. Then, it has to be processed on machine 1 and
that takes 3 time units, and then, on machine 2 for 6 time
units, and so on. Each job goes through a 6-stage pipeline.
For this paper, we consider the more realistic extension of
JSSP, whereby jobs keep coming in with some stochastic
distribution, and are enqueued for the resource pools they
need. The resource pools could have more than a single
machine each, as opposed to the classic JSSP model. The
objective is maximize the system’s throughput.

Fig. 2. The FT06 JSSP and a Gantt chart representing its optimal solution.

B. Reinforcement learning

RL is an area of machine learning inspired by behavioral
psychology that aims at making a software agent learn the
optimal action for each system state, based on the rewards
or penalties ensuing from its actions. This is an automated,
non-supervised learning technique where the agent, which
initially does not have any knowledge of its environment,
starts out by taking random actions. Then, it iteratively takes
different actions that might change the state of the agent,
and might also give it a positive or negative reward, as
feedback, depending on whether the result of the action is
favorable or unfavorable. Based on this reward, the agent
eventually learns which actions are optimal for each state.

The optimal action would be the one that maximizes the
agent’s expected long-term reward. A simple example to
understand this would be a software agent playing the video
game, Pacman, which earns points on eating pellets and
dies on meeting a ghost. The state of the agent would have
information like positions of Pacman, pellets, and ghosts. The
possible actions are staying still, or moving to the left, right,
up, or down. The rewards would be positive when the agent
eats the pellets, and negative when the agent does something
unfavorable, like meeting a ghost.
Q-learning is a model-free RL technique that can find the op-
timal action-selection policy for any given Markov Decision
Process. It works by learning an action-value function, called
the Q-function, which eventually gives the expected utility
of taking a particular action in a particular state and follows
the optimal policy thereafter. The core of the learning is a
simple iteration process based on equation below.

(st, at)← (1− α)Q(st, at) + α

(
rt + γmax

at′
Q(st′ , at′)

)
(1)

where st, at, rt are the state, action and reward at the t time.
Here, α < 1 is called the learning rate, denoting the extent
to which the current observation affects the Q-value, and γ
is a discounting factor of future rewards.

In realistic cases of the distributed factory operations
that we observed, the possible state space is huge, so the
canonical Q-learning algorithm would not converge in any
reasonable amount of time as it would have to learn the best
action for each of these states, separately, to reach an optimal
policy. The number of iterations required for this is extremely
high and we need to apply approximate Q-learning. In such
scenarios, approximate Q-learning techniques, where the Q-
function is approximated by decision trees or neural networks
is used. Using deep neural networks as Q-function approx-
imators has been proven efficient in various applications,
including Google’s AlphaGo [26], [27].

III. SYSTEM MODEL

We consider a factory model where many jobs (tasks) of
different types are to be processed on different machines
(resources). Jobs of n different job types J1, J2 . . . Jn en-
ter the system, each with Poisson distributed arrival rates
λ1, λ2, . . . , λn. The factory has m sets of different resource
pools: P1, P2, . . . Pm. Each resource pool Pi has ci identical
resources/machines that can perform a fixed set of operations.
Every machine can be either ‘busy’, which means it is
currently performing an operation on a job, or ‘idle’, which
means it is not performing any operations on jobs at the
time. The ci is called the capacity of the resource pool Pi.
Because of practical cost constraints in factory setups, the
total possible capacities of all resource pools is limited to
the maximum capacity c̄i.

Each job type has a fixed set of operations to be performed
on it sequentially, to convert it to the final product. Each
of these operations has two values associated with it: the
machine on which the operation can be performed, and



the processing time needed for the operation to complete.
For example, operation o1(3, 1) means that operation o1
requires a machine from resource pool P3 for 1 time unit.
We consider only deterministic processing times in this
paper. It is important to note that different job types require
different operational sequences to be performed on them.
The resources are physically distributed, and thus, there is a
delay for any job to travel from one machine to another. We
consider this delay as an experimental parameter in our sim-
ulations. There is a desired throughput for this factory model
and our goal is to achieve it by both optimal scheduling and
proper bottleneck identification and elimination.

For this purpose, we consider the factory model as a
single Markov decision process (MDP) where the state of
the system at any time t, st is comprised of the infor-
mation about the processing status of different jobs and
resource pools in the system. This can be represented
as st = (sit,1, . . . , s

i
t,m, s

o
t,11, . . . , s

o
t,nm, s

c
t,1, . . . , s

c
t,m, s

h
t ),

where sit,k is 1 if there is an idle machine in the k-th resource
pool and 0 if all machines in the k-th resource pool are busy;
sot,lk ∈ [0, 1] is an indicator of number of jobs of job type
l waiting for k-th resource pool (Llk). The sot,lk is 1 if Llk

is greater than a threshold value L̄k, and sot,lk = Lkl/L̄k

otherwise; sct,k ∈ (0, 1) where sct,k is ck/c̄k and sht is a
ratio of the current throughput to the desired throughput.
Furthermore, the terminal state (sT ) occurs when the system
has been simulated for the time interval of our concern (T ).

To detect the bottleneck resource pools in the system,
the model also collects bottleneck metrics like the average
waiting time (Wi), the average queue length (Li), and
average utilization of each (Ui) resource pool over each time
interval. The information bnData = {Wi, Li, Ui and ci for
each Pi} is stored for each time interval over which the
bottleneck has to be detected.

IV. DESIGN

A. The machine learning based decision making agents

MINERVA has two machine learning based decision mak-
ing agents: the scheduling agent and the bottleneck detection
agent. The first one can be referred to as the inner loop
decision making agent and takes scheduling decisions. This
agent comes into play at times t when either of the following
events of scheduling interest happen: when a resource be-
comes idle, or when a new job arrives to be processed by an
idle machine that has no other jobs waiting for it. It decides
which among the jobs waiting for a resource to pick. The
resource then starts processing that job and the simulation
continues until another resource or even the same resource
becomes idle again. Based on whether the schedule picked
was good (leads to more throughput) or bad, the simulation
model provides a feedback to the decision making agent,
which uses this to refine decisions in future iterations. This
agent is essentially a reinforcement learning agent that learns
the optimal scheduling action for each system state, over
time. The possible actions at ∈ A taken by the scheduling
RL agent, at any instant of time t, describes the selected job
type to be scheduled and the resource pool on which it is

to be scheduled. The complete set of all possible actions
is A = {ajp}, where ajp is the action of scheduling a
job type j on resource pool p. Though this complete set
of possible actions is fixed, the set of actions possible at any
particular time varies dynamically because not all resource
pools will have a free machine at that instant, and neither
will all the different job types be waiting for a particular
resource pool at that time. This is different from typical
RL problems where the action space is fixed. We developed
our RL algorithm such that it can handle a dynamic action
space by choosing only from the set of possible actions,
which will be communicated to the agent from the simulation
model. The overall aim of the scheduling RL agent is to
find a scheduling policy π that maximizes the accumulated
reward over time. The reward for the agent is dependent on
the throughput of the system, which is the objective to be
maximized in our problem. For each action at that results in
the next state st′ , we give a small reward proportional to the
throughput. For the final state, if the throughput is greater
than a threshold, we give a big positive reward, and if the
throughput is lower than the threshold, we give a penalty.
This can be represented as

rt =


k1 ·Ht if st 6= sT

k2 if st = sT and Ht ≥ H
−k2 if st = sT and Ht ≤ H

where k1 and k2 are all positive numbers (k2 >> k1),
Ht is the throughput at time t, and H denotes the desired
throughput. Once the simulation has been iterated enough,
the Q-learning cost function becomes minimal and the policy
converges. This means that the agent has learned an ac-
ceptable schedule, the training phase has been completed,
and the agent continues to schedule using this learned
policy. MINERVA also finds the bottleneck in the system at
regular intervals of time, if the throughput is less than the
desired throughput using the bottleneck detection agent—a
neural network-based classifier. Any one machine among the
resource pools can be the system bottleneck at any given
time. The agent is initially trained using Algorithm 1 in
IV-B. At periodic intervals, this trained agent looks at the
bottleneck metrics (bnData) of the system for that interval
and outputs the bottleneck resource pool Pbn in the system.
Then, it increases the capacity of the bottleneck resource
pool by one unit to increase the throughput of the system
and continues to run the simulation. The possible outputs
for the bottleneck prediction agent, always an integer from
0 to m, denotes one of the resource pools as bottleneck (1
to m) or no bottleneck in the system (0).

B. The Learning Algorithm

MINERVA uses an approximate Q-learning technique,
where neural networks are used to approximate the Q-
function for implementing the scheduling agent. We use the
ε greedy strategy to ensure that exploration of the state
space is given priority initially, and once it has learned
sufficiently about the state space, it tries to reduce random



exploration and resorts to rewarding actions. ε denotes the
extent of exploration to be done- ε = 1 means that the agent
always takes random actions for maximum exploration, and
ε = 0 means that the agent always follows the currently
known optimal policy with no random actions. The ε greedy
strategy works by having a high value for ε initially, so that
it gets to explore the state space, and gradually reducing
the ε value over time. Every simulation run by the agent is
called an episode. MINERVA also utilizes a technique called
experience replay [23], where a set consisting of the state,
action, next state, and the reward, which we call ‘experience’
at each time-step, et = (st, at, rt, st′) is collected over many
episodes into a replay memory data-set D = e1 . . . eN , of
fixed size. The algorithm used is Algorithm 2. A minibatch of
random experience samples e ∈ D are taken from the replay
memory with all the experience samples. Q-learning updates
as in II-B are performed on this minibatch of samples.
This leads to updated Q-function. After performing this
experience replay, the agent selects and executes an action
according to an ε greedy policy. Then, the reward is obtained
and this experience is added to the replay memory. These
steps are repeated multiple times until a convergent policy is
obtained. Since each experience entry is used in many weight
updates during the learning process, it results in higher data
efficiency. If online policies are used, there is a possibility
of undesirable feedback loops arising during the learning,
which could lead to the parameters getting stuck in local
minima, or even diverging hugely [33]. By using experience
replay, the behavior distribution is averaged over many of its
prior states, smoothing out learning and avoiding oscillations
that would delay convergence. In our prior work [18], [17],
we have had to do feature engineering for obtaining good
classification, but here the problem space is simpler and all
features are real-valued and we empirically did not find a
need for such feature engineering.

Algorithm 1 Learning to identify bottleneck resources
1: procedure VERIFY TRUE BOTTLENECK(seed)
2: Run the AnyLogic system model for chosen seed.
3: Note bnData = {Wi, Li, Ui and ci for each Pi.}
4: for i ≤ numResourcePools do
5: Increase capacity of Pi by 1.
6: Run the AnyLogic model and note throughput.
7: end for
8: Mark Pi whose increase in capacity led to maximum throughput as

the true bottleneck (Pbn).
9: Return the bnData and Pbn.

10: end procedure
11: procedure LEARN BOTTLENECK IDENTIFICATION
12: repeat
13: Choose a random seed, with random model parameters.
14: Run procedure VERIFY TRUE BOTTLENECK.
15: Store the returned bnData and Pbn as an entry in the data set

for supervised learning.
16: dataSetSize← dataSetSize+ 1
17: until dataSetSize = Dss

18: Separate out the collected data into disjoint training data (datatr),
validation data (datavl) and testing data(datats).

19: Use datatr to train a neural network to detect Pbn from bnData
.

20: Cross validate the neural network using the datavl.
21: Test the accuracy of the neural network using datats.
22: end procedure

Algorithm 2 Learning the optimal scheduling
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights
3: for episode = 1 :M do
4: Initialize system state s1.
5: for t ∈ (1, T ) when an event of scheduling interest happens do
6: With probability ε select a random action at. Each action at

represents processing particular job on a particular machine
7: Otherwise select at = argmaxaQ(st, a)
8: Execute action at in the AnyLogic jobshop model.
9: Store transition (st) in D

10: Sample a minibatch of transitions (st, at, rt, st′ ) from D
11: if st′ is a terminal state then
12: Set: yt ← rt
13: else
14: Set yt ← rt +maxaQ(st′ ; a)
15: end if
16: Perform a gradient descent step on (yt −Q(st, at))2

17: end for
18: end for

Fig. 3. Overall workflow of MINERVA

The overall workflow of MINERVA is in Figure 3. While
the scheduling agent is called continuously, the bottleneck-
identification agent is called only once per fixed time interval.

V. IMPLEMENTATION
The factory models to be optimized were created as

discrete event simulation models in AnyLogic 7 [1], a
multimethod Java-based simulation software. The RL agent
modeling was done using the Java-based deep learning
library dl4j [2] for tight integration with AnyLogic. The
agents described in IV-A as well as the simulation model
explained above are part of the top-level AnyLogic experi-
ment. The simulation model implements an MDP interface
that provides functions for the agents to easily start a new
instance of the simulation model, to pause, run, and reset
a simulation. This interface also provides the agents the
encapsulated information about the current simulation system
state, the possible action space, the reward, an indication
of the simulation termination, and a way for the agents to
communicate the next action to be taken to the model.

VI. EVALUATION AND RESULTS

We used an extension of the ft06 problem, as described in
Section III, to evaluate MINERVA. The model was created in
AnyLogic as a discrete-event simulation model. The schedul-
ing agent was integrated into the model using the MDP



interface and was run with the objective of finding an optimal
schedule. It was observed that the agent found a schedule
that gave an average throughput of 56 jobs/time unit, which
is significantly higher than throughputs using the baseline
techniques—FIFO and Shortest Processing Time (SPT)—the
most common industrial dispatching rules. MINERVA gets
this improvement because it uses the relevant information
like the queue length for each operation and the number of
resources in each pool from the simulation model to make
a scheduling decision, rather than just naively following a
fixed rule. Figure 4 summarizes this result. We evaluated

Fig. 4. Throughput by MINERVA scheduling vs. popular scheduling rules

the bottleneck identification agent, detailed in IV, on the
realistic extension of the classic FT06 JSSP with continuous
job arrivals. It was seen that MINERVA was able to identify
system bottlenecks with a much higher accuracy (92.6%)
when compared to other traditional techniques, all with an
accuracy of less than 75% on the same test set, as shown
in Figure 4. This is because one bottleneck metric alone is
not really sufficient to detect the bottleneck. For instance,
if a resource pool has a long queue length, but if all the
jobs waiting in the queue have a very short processing time,
this resource pool might not actually be a bottleneck. Or, for
example, the average waiting time of a resource pool could
have been high because of some particular job that takes
a long processing time, and might not be really due to the
resource pool posing a bottleneck. MINERVA performs better
than these individual methods because it looks at a more
holistic picture of the system states than what is portrayed
by one bottleneck metric. However, MINERVA still fails when
it is not able to judge the bottleneck resource pool with
certainty based on the information it has. To get a better
idea of the performance of MINERVA with respect to the
other bottleneck methods, we used another benchmark model
from [3], which we refer to as the AD05 benchmark. This
benchmark model has four resource pools and five job types.
The benchmark is described in Figure 6. This indicates that
Job 1 had to be processed on resource pool 1 for 2 time units,
then on resource pool 4 for 3 time units etc. The extended
model with continuous job arrival has a stochastic Poisson
distributed arrival rate of 1 job per 3 time units. It was seen
that MINERVA was able to identify bottlenecks to an accuracy
of 95.6%, which is over 25% better than the accuracy of the

Fig. 5. Accuracy of bottleneck detection by MINERVA vs. popular methods
for FT06 benchmark extension

best one among other methods (Figure 7).

Fig. 6. Figure representing the AD05 JSSP benchmark

Fig. 7. Comparison of accuracy of bottleneck detection by MINERVA com-
pared to bottleneck detection methods for extension of AD05 benchmark

We also studied the variation of throughput with increase
in resource pool capacity for the two benchmarks. This was
done so as to get a feel of how effective each bottleneck iden-
tification method is with respect to the increase in through-
put. We used each of the different bottleneck identification
methods—MINERVA, average queue length, utilization, and
average waiting time, in order to detect the bottlenecks sep-
arately. The capacity of the identified bottleneck resource is
then increased by 1 unit. The simulation is then continued for
the same interval of time, and this bottleneck identification
and elimination step is repeated for 4 more steps. Then, we
plot the throughput vs. increase in capacity for each of the 4
bottleneck identification methods. The graphs are shown in
Figures 8 and 9. It is seen that MINERVA performs the best



because it detects true bottlenecks with greater accuracy than
the other methods. This means that with MINERVA, when the
actual bottleneck resource pool’s capacity is increased, the
greatest increase in throughput can be obtained.

Fig. 8. Throughput vs. increase in resource pool capacity as identified by
various bottleneck identification methods for extension of FT06 benchmark

Fig. 9. Throughput vs. increase in resource pool capacity as identified by
other bottleneck detection methods for AD05 benchmark extension

In reality, there would be some time delay in the machines
communicating information to the centralized agent and for
the agent to communicate the bottleneck mitigation action
to the machines. There will also be delays in physically
transferring jobs to the resource pools. However, the above
experiments did not consider these delays. We performed an
experiment where we included this delay in the simulation
model and varied its value within a reasonable range. For
both benchmarks, we vary this delay from 0 to 1 time unit.
The relevant graph is in Figure 10. It is seen that there is a
linear decrease of throughput with respect to the latency and
hence it is of utmost importance to take necessary measures
to reduce it. The decrease in throughput with increase in
latency is steeper for AD05 benchmark as compared to FT06
benchmark. This is because, in general, the processing times
of operations in the AD05 benchmark is lower compared
to that in FT06 benchmark. This means that the latency to
total processing time ratio of most jobs would be higher
in AD05 than FT06, and hence, the effect of increased
latency is more prominent in AD05. However, if we were to
parallelize our entire process, the effect of the latency will
be less prominent. Our problem though is not embarrassingly
parallel and we will have to identify more subtle forms of

extracting concurrency as we have done in [24] for example
in the domain of computational genomics.

Fig. 10. Throughput vs. latency for extension of FT06 and AD05
benchmarks

VII. RELATED WORK

In industrial settings, it is important to eliminate bottle-
necks if possible, such as through reprogramming parts of the
pipeline [6]), to make the system as efficient as possible [19],
[34]. Traditionally, utilization-based methods [20] have been
used to identify bottleneck machines, whereby the machine
with the highest utilization is considered to be the system
bottleneck. Other commonly used bottleneck identification
metrics are the queue length of jobs waiting at each machine
[29] and the average waiting time for the machines [20].
There have been many system theoretical approaches to
bottleneck identification over the years. Sengupta et al. [31]
proposed to analyze the inter-departure time of the different
machines in the system to identify the bottlenecks. Chiang et
al. [13] suggested using frequencies of machine blockages
and starvations as indicators of bottlenecks. The blockage
and starvation probability of the machines are used to iden-
tify bottlenecks in [21]. However, these approaches are based
on flowshop-like models, where there are machines that
perform consecutive tasks arranged with buffers in between.
Hence, they need information related to the structure of the
factory system, which are generally not fixed in the case
of job shops, as the sequence of machines depends on the
job that is being processed. Also, several other proposed
techniques like maximum average per hop delay [15] and
workload matrix-based convex analysis [10] make specific
assumptions like M/M/1 system and a closed queuing net-
work respectively and are not applicable to generic factory
models and job shops. An orthogonal dimension is how to
measure the input metrics that will feed into the various
types of models. There is a rich literature set in the area
of monitoring operational systems, through software add-
ons [12], [11] or through specialized hardware working with
the software add-ons [32], [22].

VIII. CONCLUSION

This paper introduces MINERVA, a novel technique to
improve factory performance using approximate Q-learning



techniques to optimize job shop scheduling and neural net-
works to predict system resource bottlenecks. MINERVA is
implemented on realistic extensions of representative classic
JSSP benchmarks. MINERVA is also evaluated by comparing
the results to other competitive techniques identifying bottle-
necks with an accuracy of 95.6%, which is over 25% better
than the best-in-class, increasing throughput. The effect of
latency on the performance of the system was also studied.
A future extension of this work would consider jobs with
stochastic processing times, unlike in our current study
where all jobs have deterministic times. Additionally, we
will consider distributed processing of the two stages—
optimal scheduling and bottleneck detection. Distributed
processing will make the overall solution more scalable
and thus applicable to larger problem sizes and to latency-
sensitive systems, while trading off some accuracy. Finally,
from a usability standpoint, we are considering developing a
Domain Specific Language (DSL) that a system owner can
use to describe the processing pipelines. There is rich history
of such DSLs for various domains, such as Sarvavid [25]
(computational genomics), or Delite [9] (for building DSLs).
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